

RADIATION HARDENED LOGIC POWER MOSFET SURFACE MOUNT (SupIR-SMD)

20V, N-CHANNEL R
TECHNOLOGY

Product Summary

Part Number	Radiation Level	RDS(on)	Ι _D
IRHLNS87Y50	100 kRads (Si)	$2.5 m\Omega$	75A*

Description

IR HiRel R8 Logic Level Power MOSFETs provide simple solution to interfacing CMOS and TTL control circuits to power devices in space and other radiation environments. The threshold voltage remains within acceptable operating limits over the full operating temperature and post radiation. This is achieved while maintaining single event gate rupture and single event burnout immunity.

The device is ideal when used to interface directly with most logic gates, linear IC's, micro-controllers, and other device types that operate from a 3.3-5V source. It may also be used to increase the output current of a PWM, voltage comparator or an operational amplifier where the logic level drive signal is available.

Features

- 5V CMOS and TTL Compatible
- Fast Switching
- Low RDS(on)
- Low Total Gate Charge
- Simple Drive Requirements
- Surface Mount
- Hermetically Sealed
- Light Weight
- ESD Rating: Class 2 per MIL-STD-750, Method 1020

Absolute Maximum Ratings

Pre-Irradiation

Symbol	Parameter	Value	Units
I_{D1} @ V_{GS} = 4.5V, T_{C} = 25°C	Continuous Drain Current	75*	
I _{D2} @ V _{GS} = 4.5V, T _C = 100°C	Continuous Drain Current	75*	Α
I _{DM} @ T _C = 25°C	Pulsed Drain Current ①	300	
P _D @ T _C = 25°C	Maximum Power Dissipation	125	W
	Linear Derating Factor	1.0	W/°C
V _{GS}	Gate-to-Source Voltage	+12/-10	V
E _{AS}	Single Pulse Avalanche Energy ②	535	mJ
I _{AR}	Avalanche Current ①	75	Α
E _{AR}	Repetitive Avalanche Energy ①	12.5	mJ
dv/dt	Peak Diode Recovery dv/dt ③	0.8	V/ns
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Package Mounting Surface Temperature	300 (for 5s)	
	Weight	3.3 (Typical)	g

^{*} Current is limited by package

For Footnotes, refer to the page 2.

Pre-Irradiation

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = 250µA
В	Static Drain-to-Source On-State			2.5	mΩ	V _{GS} = 4.5V, I _{D2} = 75A* ④
$R_{DS(on)}$	Resistance			2.3	mΩ	V _{GS} = 7.0V, I _{D2} = 75A* ④
V _{GS(th)}	Gate Threshold Voltage	1.0		2.3	V	\\ -\\ -1.9mA
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		- 4.3		mV/°C	$V_{DS} = V_{GS}$, $I_D = 1.8 \text{mA}$
Gfs	Forward Transconductance	75			S	V _{DS} = 15V, I _{D2} = 75A ④
I _{DSS}	Zero Gate Voltage Drain Current			1.0		$V_{DS} = 16V, V_{GS} = 0V$
	Zero Gate Voltage Drain Current			50	μA	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I_{GSS}	Gate-to-Source Leakage Forward			100	nΛ	V _{GS} = 12V
	Gate-to-Source Leakage Reverse			-100	nA	V _{GS} = -10V
Q_{G}	Total Gate Charge			130		I _{D1} = 75A
Q_{GS}	Gate-to-Source Charge			50	nC	V _{DS} = 10V
Q_{GD}	Gate-to-Drain ('Miller') Charge			35		V _{GS} = 4.5V
$t_{d(on)}$	Turn-On Delay Time			80		$V_{DD} = 10V$
tr	Rise Time			130	no	I _{D1} = 75A
$t_{d(off)}$	Turn-Off Delay Time			100	ns	$R_G = 2.35\Omega$
t _f	Fall Time			55		V _{GS} = 4.5V
Ls +L _D	Total Inductance		12		nH	Measured from center of Drain pad to center of Source pad
C _{iss}	Input Capacitance		15330			V _{GS} = 0V
C _{oss}	Output Capacitance		3140		pF	V _{DS} = 20V
C _{rss}	Reverse Transfer Capacitance		610			f = 1.0MHz
R _G	Gate Resistance		0.4		Ω	f = 1.0 MHz, open drain

Source-Drain Diode Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Is	Continuous Source Current (Body Diode)			75*	^	
I _{SM}	Pulsed Source Current (Body Diode) ①			300	Α	
V _{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C, I_S = 75A, V_{GS} = 0V$
t _{rr}	Reverse Recovery Time			100	ns	$T_J = 25^{\circ}C, I_F = 75A, V_{DD} \le 20V$
Q _{rr}	Reverse Recovery Charge			155	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

^{*} Current is limited by package

Thermal Resistance

Symbol	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case			1.0	°C/W

Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\circ}$ V_{DD} = 20V, starting T_J = 25°C, L = 0.19mH, Peak I_L =75A, V_{GS} = 10V
- $\label{eq:local_sd} \begin{tabular}{ll} \be$
- \odot Total Dose Irradiation with V_{GS} Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, Method 1019, condition A.
- © Total Dose Irradiation with V_{DS} Bias. 16 volt VDS applied and VGS = 0 during irradiation per MIL-STD-750, Method 1019, condition A.

Radiation Characteristics

IR HiRel Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at IR HiRel is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation \$6

Symbol	Parameter	Up to 100	kRads (Si)	Units	Test Conditions	
	i didiletei	Min.	Max.	Office		
BV _{DSS}	Drain-to-Source Breakdown Voltage	20		V	$V_{GS} = 0V, I_{D} = 1.0mA$	
$V_{GS(th)}$	Gate Threshold Voltage	1.0	2.3	V	$V_{DS} = V_{GS}$, $I_D = 1.8 \text{mA}$	
I _{GSS}	Gate-to-Source Leakage Forward		100	nA	V _{GS} = 12V	
I _{GSS}	Gate-to-Source Leakage Reverse		-100	nA	V _{GS} = -10V	
I _{DSS}	Zero Gate Voltage Drain Current		1.0	μA	$V_{DS} = 16V, V_{GS} = 0V$	
R _{DS(on)}	Static Drain-to-Source ④ On-State Resistance (TO-3)		3.0	mΩ	V _{GS} = 4.5V, I _{D2} = 75A	
R _{DS(on)}	Static Drain-to-Source ④ On-State Resistance (SupIR-SMD)		2.5	mΩ	V _{GS} = 4.5V, I _{D2} = 75A	
V_{SD}	Diode Forward Voltage		1.0	V	V _{GS} = 0V, I _S = 75A	

IR HiRel radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Worst Case Single Event Effect Safe Operating Area

	LET Engage	D	VDS (V)			
lon	LET (MeV/(mg/cm²))	Energy (MeV)	Range (µm)	@ VGS=0V	@ VGS=-1V	@ VGS=-2V
Kr	32.4	679	83.3	16	16	
Xe	61.7	584	48.7	14	14	
Au	92.3	1156	65.1	12	12	

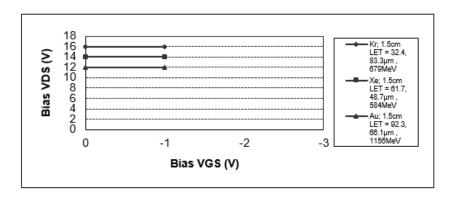


Fig a. Worst Case Single Event Effect, Safe Operating Area

For Footnotes, refer to the page 2.

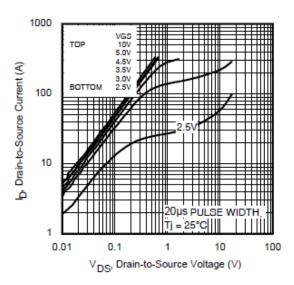


Fig 1. Typical Output Characteristics

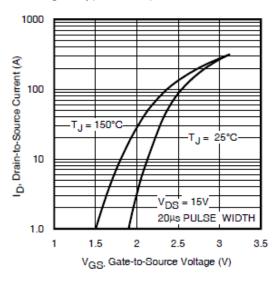


Fig 3. Typical Transfer Characteristics

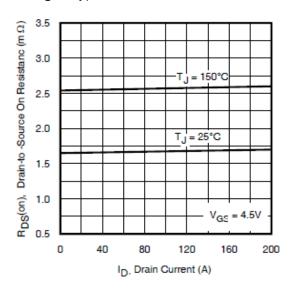


Fig 5. Typical On-Resistance Vs Gate Voltage

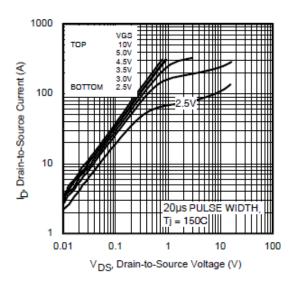


Fig 2. Typical Output Characteristics

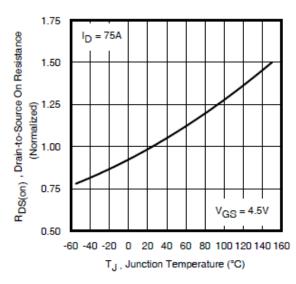


Fig 4. Normalized On-Resistance Vs. Temperature

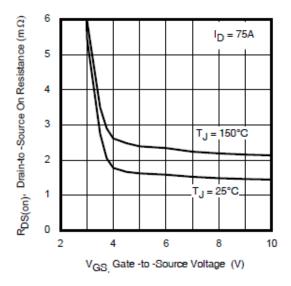


Fig 6. Typical On-Resistance Vs Drain Current

Pre-Irradiation

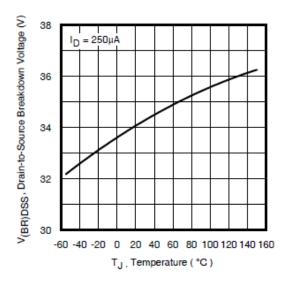


Fig 7. Typical Drain-to-Source Breakdown Voltage Vs Temperature

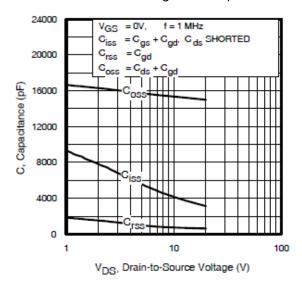


Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

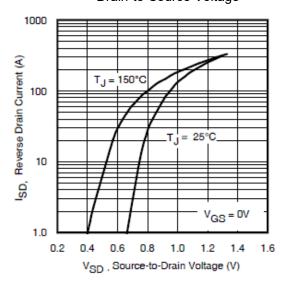


Fig 11. Typical Source-Drain Diode Forward Voltage

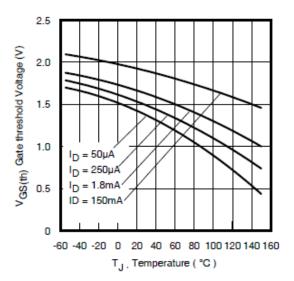


Fig 8. Typical Threshold Voltage Vs Temperature

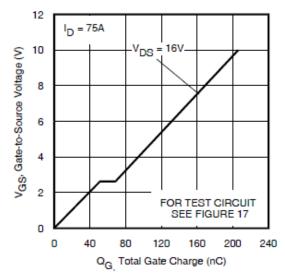


Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

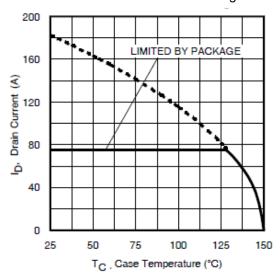
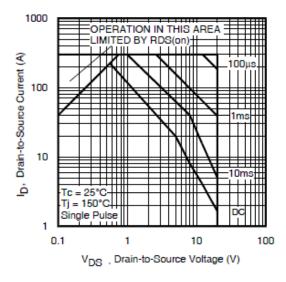



Fig 12. Maximum Drain Current Vs. Case Temperature

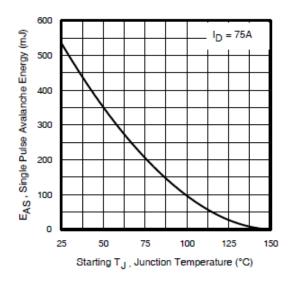


Fig 13. Maximum Safe Operating Area

Fig 14. Maximum Avalanche Energy Vs. Drain Current

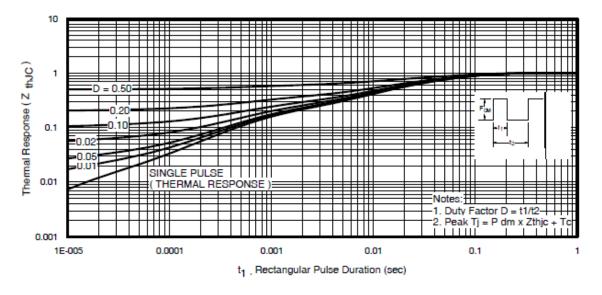


Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case

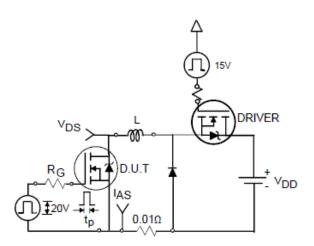


Fig 16a. Unclamped Inductive Test Circuit

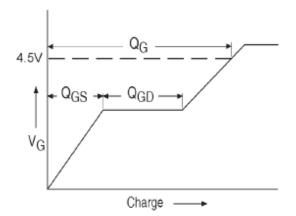


Fig 17a. Gate Charge Waveform

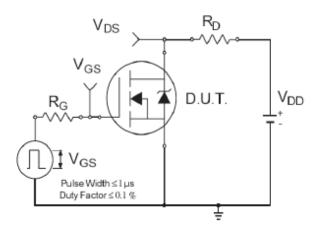


Fig 18a. Switching Time Test Circuit

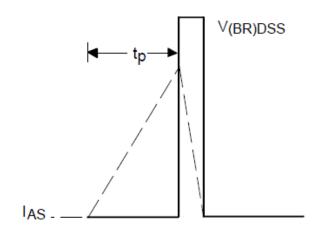


Fig 16b. Unclamped Inductive Wave-

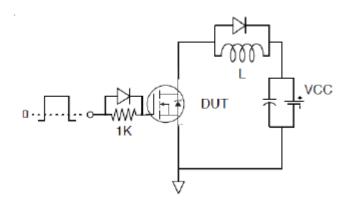


Fig 17b. Gate Charge Test Circuit

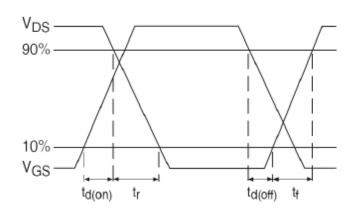
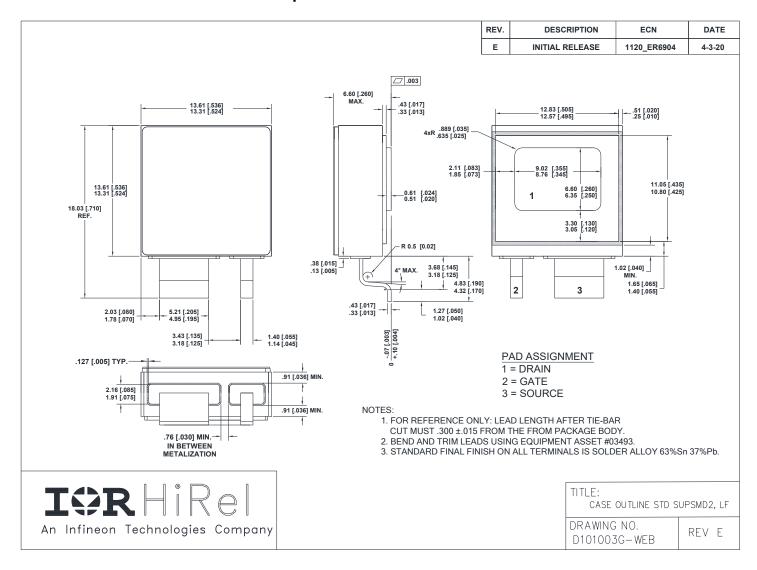



Fig 18b. Switching Time Waveforms

Note: For the most updated package outline, please see the website: SupIR-SMD

Case Outline and Dimensions — SupIR-SMD

Infineon Technologies Service Center: USA Tel: +1 (866) 951-9519 and International Tel: +49 89 234 65555

Leominster, Massachusetts 01453, USA Tel: +1 (978) 534-5776

San Jose, California 95134, USA Tel: +1 (408) 434-5000

Data and specifications subject to change without notice.

IMPORTANT NOTICE

The information given in this document shall be in no event regarded as guarantee of conditions or characteristic. The data contained herein is a characterization of the component based on internal standards and is intended to demonstrate and provide guidance for typical part performance. It will require further evaluation, qualification and analysis to determine suitability in the application environment to confirm compliance to your system requirements.

With respect to any example hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind including without limitation warranties on non- infringement of intellectual property rights and any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's product and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of any customer's technical departments to evaluate the suitability of the product for the intended applications and the completeness of the product information given in this document with respect to applications.

For further information on the product, technology, delivery terms and conditions and prices, please contact your local sales representative or go to (www.infineon.com/hirel).

WARNING

Due to technical requirements products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.