
# Kamaka Electronic GmbH

73431 Aalen - Ulmer Strasse 130 – Phone: +49-7361-9662-0 – Fax: +49-7361-9662-29

# WELCOME TO XSIS ELECTRONICS Manufacturer of Hybrid Microcircuit Crystal Oscillators For Military, Space, and High Reliability Industrial and Telecommunications Applications

Over 33 Years of Delivering Outstanding Quality Hybrid Microcircuit Crystal Oscillators



#### **NEW PRODUCTS**

| Type<br>Number | Supply<br>Voltage | Output<br>Type | Output<br>Enable | Frequency Range      | Package Outline |
|----------------|-------------------|----------------|------------------|----------------------|-----------------|
| XC5A           | 5.0 VDC           | HCMOS/TTL      | Yes              | 1.0 MHz - 105.0 MHz  |                 |
| XC5L           | 3.3 VDC           | HCMOS/TTL      | Yes              | 1.0 MHz - 200.0 MHz  | 5x7 mm          |
| XC5N           | 2.5 VDC           | HCMOS          | Yes              | 1.0 MHz - 190.0 MHz  | Lead Less       |
| XC5R           | 1.8 VDC           | HCMOS          | Yes              | 1.0 MHz - 160.0 MHz  |                 |
| XE40-100       | 5 VDC             | TTL            | Yes              | 400 KHz to 90 MHz    | 7x9 mm          |
| XE40-200A      | 5 VDC             | HC/ACMOS       | Yes              | 400 K Hz to 90 MHz   | ALTER DIR.      |
| XE40-L00A      | 3.3 VDC           | HC/ACMOS/TTL   | Yes              | 400 KHz to 100 MHz   | "J" Leads       |
| XE30-100       | 5 VDC             | TTL            | Yes              | 400 KHz to 90 MHz    | 9x14 mm         |
| XE30-200A      | 5 VDC             | HC/ACMOS       | Yes              | 400 K Hz to 90 MHz   | A TOS           |
| XE30-L00A      | 3.3 VDC           | HC/ACMOS/TTL   | Yes              | 400 KHz to 100 MHz   | "J" Leads       |
| M55310/09      | 5.0 VDC           | TTL            | No               | 400.0 KHz - 60.0 MHz | 8 Pin (Round)   |
| M55310/27      | 5.0 VDC           | HCMOS          | Yes              | 1.0 MHz - 85.0 MHz   | 9x14 mm         |
| M55310/30      | 3.3 VDC           | HCMOS          | Yes              | 450.0 KHz - 85.0 MHz | "J" Leads       |

#### **PRODUCT HIGHLIGHTS**

- QPL TO MIL-PRF-55310
  - 883B SCREENING
- CUSTOM HI-REL SCREENING
- TTL CMOS AC/HCMOS GATED ECL
  - COMPLEMENTARY OUTPUTS
  - MULTIPLE FREQUENCY OUTPUTS
    - WIDE FREQUENCY RANGES
- VARIETY OF FREQUENCY STABILITIES
  - MULTIPLE TEMPERATURE RANGES
    - DUAL IN-LINE PACKAGE
      - TO (Round) PACKAGE
- LEADLESS CHIP CARRIER (Surface Mount)
  - "J" LEAD PACKAGE (Surface Mount)
- "GULL WING" LEADS PACKAGE (Surface Mount)
- RESISTANCE WELDED, HERMETICALLY SEALED
  - HIGH SHOCK & VIBRATION DESIGNS

## **STANDARD PRODUCTS**

| Type<br>No. | Supply<br>Voltage | Output<br>Type | Output<br>Enable | Frequency<br>Range  | Package<br>Outline |
|-------------|-------------------|----------------|------------------|---------------------|--------------------|
| XC5A        | 5.0 VDC           | HCMOS/TTL      | YES              | 1.0 MHz - 105.0 MHz |                    |
| XC5L        | 3.3 VDC           | HCMOS/TTL      | YES              | 1.0 MHz - 200.0 MHz | 5 x 7 mm           |
| XC5N        | 2.5 VDC           | HCMOS          | YES              | 1.0 MHz - 190.0 MHz | Lead Less          |
| XC5R        | 1.8 VDC           | HCMOS          | YES              | 1.0 MHz - 160.0 MHz |                    |
| XE40-100    | 5 VDC             | TTL            | Yes              | 400 KHz to 90 MHz   | 9 x 7 mm           |
| XE40-200A   | 5 VDC             | HC/ACMOS       | Yes              | 400 KHz to 90 MHz   |                    |
| XE40-L00A   | 3.3 VDC           | HC/ACMOS/TTL   | Yes              | 400 KHz to 100 MHz  | "J" Leads          |
| XE30-100    | 5 VDC             | TTL            | Yes              | 400 KHz to 90 MHz   | 9 x 14 mm          |
| XE30-200A   | 5 VDC             | HC/ACMOS       | Yes              | 400 KHz to 90 MHz   |                    |
| XE30-L00A   | 3.3 VDC           | HC/ACMOS/TTL   | Yes              | 400 KHz to 100 MHz  | "J" Leads          |
| X100        | 5 VDC             | TTL            | Yes              | 60 Hz to 90 MHz     |                    |
| M100        | 5 VDC             | TTL            | No               | 60 Hz to 90 MHz     |                    |
| E100        | 5 VDC             | TTL            | No               | 60 Hz to 90 MHz     | 14 Pin DIP         |
| X200A       | 5 VDC             | HC/ACMOS       | Yes              | 5 Hz to 90 MHz      | New York           |
| X3200       | 3.3 VDC           | HC/ACMOS/TTL   | Yes              | 100 KHz to 100 MHz  |                    |
| <b>XL00</b> | 3.3 VDC           | HC/ACMOS/TTL   | Yes              | 100 KHz to 100 MHz  |                    |
| X200        | 5 to 15 VDC       | CMOS           | No               | 1.5Hz to 12 MHz     | 14 Pin DIP         |
| M200        | 5 to 15 VDC       | CMOS           | No               | 1.5Hz to 12 MHz     | Tin and            |
| E200        | 5 to 15 VDC       | CMOS           | No               | 1.5Hz to 12 MHz     |                    |
| T100        | 5 VDC             | TTL            | Yes              | 60 Hz to 90 MHz     |                    |
| T200        | 5 to 15 VDC       | CMOS           | No               | 1.5 Hz to12 MHz     | 4 Pin DIP          |
| T200A       | 5 VDC             | HC/ACMOS       | Yes              | 5 Hz to 90 MHz      |                    |
| T3200       | 3.3 VDC           | HC/ACMOS/ TTL  | Yes              | 100 KHz to 100 MHz  |                    |

| XE20-100   | 5 VDC    | TTL          | Yes | 400 KHz to 90 MHz  | TO (Round)                                  |
|------------|----------|--------------|-----|--------------------|---------------------------------------------|
| XE20-200A  | 5 VDC    | HC/ACMOS     | Yes | 400 K Hz to 90 MHz |                                             |
| XE20-L00A  | 3.3 VDC  | HC/ACMOS/TTL | Yes | 400 KHz to 100 MHz |                                             |
| XE10-100   | 5 VDC    | TTL          | Yes | 400 KHz to 90 MHz  | LCC                                         |
| XE10-200A  | 5 VDC    | HC/ACMOS     | Yes | 400 KHz to 90 MHz  |                                             |
| XE10-3200  | 3.3 VDC  | HC/ACMOS     | Yes | 400 KHz to 100 MHz | Surface Mount                               |
| XE101-100  | 5 VDC    | TTL          | Yes | 400 KHz to 90 MHz  | "J" Leads                                   |
| XE101-200A | 5 VDC    | HC/ACMOS     | Yes | 400 KHz to 90 MHz  |                                             |
| XE101-3200 | 3.3 VDC  | HC/ACMOS     | Yes | 400 KHz to 100 MHz | Surface Mount                               |
| XE102-100  | 5 VDC    | TTL          | Yes | 400 KHz to 90 MHz  | Gull Wing Leads                             |
| XE102-200A | 5 VDC    | HC/ACMOS     | Yes | 400 KHz to 90 MHz  | a man an a |
| XE102-3200 | 3.3 VDC  | HC/ACMOS     | Yes | 400 KHz to 100 MHz | Surface Mount                               |
| X300       | -5.2 VDC | ECL          | No  | 10.0 to 240 MHz    | 14 Pin DIP                                  |
| X300A      | -4.5 VDC | ECL          | No  | 10.0 to 240 MHz    |                                             |
| Т300       | -5.2 VDC | ECL          | No  | 10.0 to 240 MHz    | 4 Pin DIP                                   |
| T300A      | -4.5 VDC | ECL          | No  | 10.0 to 240 MHz    |                                             |

# QPL (M55310) OSCILLATORS

| Type<br>Number         | Supply<br>Voltage  | Output<br>Type | Output<br>Enable | Frequency Range                            | Package Outline  |
|------------------------|--------------------|----------------|------------------|--------------------------------------------|------------------|
| M55310/08              | 5.0 VDC            | TTL            | No               | 100.0 Hz - 50.0 MHz                        | 14 Pin DIP       |
| M55310/09              | 5.0 VDC            | TTL            | No               | 400.0 KHz - 60.0 MHz                       | 8 Pin Round      |
| M55310/11              | 5 to 15 VDC        | CMOS           | No               | 50 KHz - 10.0 MHz                          | 14 Pin DIP       |
| M55310/14              | 5.0 VDC            | TTL            | No               | 100.0 Hz - 25.0 MHz                        | 14 Pin DIP       |
| M55310/15              | 5 to 15 VDC        | CMOS           | No               | 5.25 Hz - 10.0 MHz                         | 14 Pin DIP       |
| M55310/16              | 5.0 VDC            | TTL            | No               | 100.0 Hz - 80.0 MHz                        | 14 Pin DIP       |
| M55310/17              | 5.0 VDC            | TTL (GATED)    | Yes              | 250.0 KHz - 50.0 MHz                       | 14 Pin DIP       |
| M55310/18              | 5 to 15 VDC        | CMOS           | No               | 5.25 Hz - 15.0 MHz                         | 14 Pin DIP       |
| M55310/19              | 5.0 VDC            | TTL            | No               | 1.0 MHz - 60.0 MHz                         | .485"Sq. LCC     |
| M55310/26              | 5.0 VDC            | HCMOS          | No               | 10.0 KHz - 65.0 MHz                        | 14 Pin DIP       |
| M55310/26              | 5.0 VDC            | HCMOS          | No               | 10.0 KHz - 65.0 MHz                        | 4 Pin DIP        |
| M55310/27<br>M55310/30 | 5.0 VDC<br>3.3 VDC | HCMOS<br>HCMOS | Yes<br>Yes       | 1.0 MHz - 85.0 MHz<br>450.0 KHz - 85.0 MHz | 9x14mm "J" Leads |

### **CRYSTAL OSCILLATORS FOR SPACE APPLICATIONS**

Xsis Electronics is a leading supplier of Advance Design Rad-Hard Hybrid Crystal Oscillators for space applications. The following is a list of some of the space programs where Xsis oscillators have been used in flight hardware.

| Program Name       | Description                                 |
|--------------------|---------------------------------------------|
| Spacebuss 3000B    | Alcatel Telecommunication Satellite Program |
| Amos 3             | Israel Telecommunication Satellite          |
| Cryosat            | ESA Earth Observation Satellite             |
| нти                | Japanese Space Vehicle to Space Station     |
| TerraSar-X         | German Earth Observation Satellite          |
| Tandem-X           | Second TerraSar-X                           |
| SMOS               | ESA Earth Observation Satellite             |
| Rapid Eye          | ESA Earth Observation Satellite             |
| Lisa Pathfinder    | ESA/NASA Earth Observation Satellite        |
| ISSR Mass Memory   | Japanese Project                            |
| Express AM33, AM44 | Russian Telecommunication Satellite         |

## STANDARD ENVIRONMENTAL SPECIFICATIONS

Environmental Specifications are derived from MIL-PRF-55310 and are generally performed on a sampling basis for qualification to insure that all units in production meet or exceed the required specifications. This sampling method, coupled with Workmanship Standards to

MIL-PRF-38534, a Product Assurance Plan in accordance with MIL-STD-790 and a Quality System certified to ISO-9001, insures a superior product.

| VIBRATION                       | 0.06" DA, 30G Peak, 10 - 2000 Hz, MIL-STD-202,<br>Method 204, Cond. G |
|---------------------------------|-----------------------------------------------------------------------|
| <b>SHOCK</b>                    | 1/2 Sine, 1500G Peak, MIL-STD-883, Method 2002,<br>Cond. B            |
| THERMAL SHOCK                   | MIL-STD-202, Method 107, Cond. B                                      |
| ALTITUDE                        | MIL-STD-202, Method 105, Cond. C                                      |
| MOISTURE RESISTANCE             | MIL-STD-202, Method 106, Vibration Sub cycle Omitted                  |
| SALT SPRAY                      | MIL-STD-883, Method 1009, Cond. A                                     |
| CONSTANT ACCELERATION           | MIL-STD-883, Method 2001, 5000G                                       |
| SOLDERABILITY                   | MIL-STD-202, Method 208                                               |
| RESISTANCE TO SOLDERING<br>HEAT | MIL-STD-202, Method 210, Cond. C or B as Applicable                   |
| RESISTANCE TO SOLVENTS          | MIL-STD-202, Method 215                                               |
| INTERNAL WATER VAPOR<br>CONTENT | MIL-STD-883, Method 1018                                              |

#### 883B SCREENING

#### (Same as MIL-PRF-55310, Class B Screening)

When 883B Screening is specified, Xsis oscillators are subjected to the following tests on a 100% basis. PDA for burn-in is in accordance with the requirements of MIL-PRF-55310 for Class B products.

| Internal Visual               | MIL-STD-883, Method 2017, Class B                                 |
|-------------------------------|-------------------------------------------------------------------|
| Stabilization Bake            | MIL-STD-883, Method 1008, Cond. C, 24 Hours Minimum               |
| Temperature Cycling           | MIL-STD-883, Method 1010, Cond. B                                 |
| Constant Acceleration         | MIL-STD-883, Method 2001, Cond. A, $Y_1$ only,( 5000 G )          |
| Seal ( fine & gross leak<br>) | MIL-STD-883, Method 1014                                          |
| Electrical Tests              | MIL-PRF-55310, Class B                                            |
| Burn-in                       | +125 °C, Nominal Supply Voltage & Burn-in Load, 160 Hours<br>Min. |
| Electrical Tests              | MIL-PRF-55310, Class B                                            |

#### **CUSTOM HI-REL SCREENING**

## (Similar to MIL-PRF-55310, "Class S" Screening)

When required by the customer, Xsis oscillators can be subjected to the following screening

tests on a 100% basis. PDA for burn-in & Non-Destruct Bond Pull are in accordance with the requirements of MIL-PRF-55310 for "class S" products.

| Non-Destruct Bond<br>Pull    | MIL-STD-883, Method 2023 ( PDA=2% or 1 wire whichever is greater ) |
|------------------------------|--------------------------------------------------------------------|
| Internal Visual              | MIL-STD-883, Method 2017, Class "S", Except Class "B" for Elements |
| Stabilization Bake           | MIL-STD-883, Method 1008, Cond. C, 48 Hours Minimum                |
| Thermal Shock                | MIL-STD-883, Method 1011, Cond. A                                  |
| Temperature Cycling          | MIL-STD-883, Method 1010, Cond. B                                  |
| <b>Constant Acceleration</b> | MIL-STD-883, Method 2001, Cond. A, $Y_1$ only, ( $5000\ G$ )       |
| Seal - fine & gross<br>leak  | MIL-STD-883, Method 1014                                           |
| PIND                         | MIL-STD-883, Method 2020, Cond. A                                  |
| Radiographic Insp.           | MIL-STD-883, Method 2012                                           |
| Electrical Tests             | MIL-PRF-55310, Class B                                             |
| Burn-in                      | +125 °C, Nominal Supply Voltage & Burn-in Load, 320 Hours<br>Min.  |
| Electrical Tests             | MIL-PRF-55310, Class B                                             |

## **MICROCIRCUIT CRYSTAL OSCILLATOR**

## TERMINOLOGY

| Nominal<br>Frequency                                                           | Customer specified frequency                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency<br>Accuracy @ +25 °C<br>(Setting and/or<br>Calibration<br>Tolerance) | How close to the specified frequency the output frequency is factory adjusted at +25 °C.                                                                                                                                                                            |
| Frequency<br>Stability Vs.<br>Temperature                                      | The maximum frequency deviation over a specified temperature range with respect to the frequency measured at +25 °C $\pm$ 1 °C. This can be expressed as a percentage, PPM, or in scientific notation, e.g. $\pm$ 0.005%, or $\pm$ 50PPM, or 50(10) <sup>-6</sup> . |
| Operating<br>Temperature<br>Range                                              | The operating temperatures range over which the frequency stability and other electrical parameters must remain within their specified limits.                                                                                                                      |
| Aging                                                                          | Long term frequency changes which are due primarily to variations in the crystal and other oscillator components.                                                                                                                                                   |
| Input Current                                                                  | The current drawn by the device from the power source at a specified supply voltage.                                                                                                                                                                                |
| Rise Time (TTL)                                                                | The time required for output voltage to rise from 0.6 VDC to 2.2 VDC.                                                                                                                                                                                               |
| Rise Time (CMOS<br>& ECL)                                                      | The time required for output voltage to rise from 10% to 90% of the peak to peak output.                                                                                                                                                                            |
| Fall Time (TTL)                                                                | The time required for output voltage to drop from 2.2 VDC to 0.6 VDC.                                                                                                                                                                                               |
| Fall Time (CMOS & ECL)                                                         | The time required for output voltage to drop from 90% to 10% of the peak to peak output amplitude.                                                                                                                                                                  |
| Symmetry (TTL)                                                                 | The percentage of time the output voltage is above the TTL threshold (1.4VDC $@$ +25 °C).                                                                                                                                                                           |
| Symmetry (CMOS<br>& ECL)                                                       | The percentage of time the output voltage is above the 50% of the peak to peak output amplitude                                                                                                                                                                     |

### **QUALITY MANAGEMENT SYSTEM**

Xsis Electronics Quality Management System is designed to meet or exceed the requirements of ISO-9001, MIL-STD-790, and MIL-PRF-55310.

Xsis Electronics has been surveyed and approved by virtually every defense contractor in the United States, and worldwide. Xsis Electronics is currently certified for ISO-9001-2000, MIL-PRF-55310 and MIL-STD-790.