

OPTOCOUPLERS Product Catalogue

EUROPEAN MANUFACTURER OF HIGH RELIABILITY OPTOELECTRONICS

SPACE HERITAGE

ISOCOM LIMITED FACILITIES AND CAPABILITIES

ISOCOM Limited is an AS9100D and ISO9001:2015 company based in the North East of England. We specialise in Custom Packaging, Hybrid Assembly Design, and offer clean room manufacturing including: wire bonding, die attaching and lid sealing. Our screening facilities and test capabilities include:

- ATE and bench test equipment for all component parameters
- High temperature handlers
- High/Low temperature forcing
- Die wafer probing
- High magnification inspection stations
- Acceleration tests to 5,000G
- Vibration test to MIL and DESC levels
- Solderability tests
- Fluorocarbon pressurisation and gross and fine leak tests
- Endurance tests and environmental tests, including temperature cycling and various burn-in processes
- Particle Impact Noise Detector (PIND) testing
- Hermetic Sealing of components
- Full production equipment for Hybrid and PCB assemblies
- Conceptual design to final production: components and systems
- Ceramic and metal product design

CONTENT	PAGE
Space Heritage	2
Index of Radiation Hard Ceramic Optocouplers	4
Ceramic High Reliability Transistor Optocouplers	5
Ceramic High Reliability High Speed Optocouplers	7
Ceramic High Reliability High Gain Optocouplers	8
Ceramic High Reliability High Gain Photon Optocouplers	9
Ceramic High Reliability Zero Crossing Triac Optocouplers	10
Ceramic High Reliability Linear Optocouplers	10
Ceramic High Reliability Solid State Relay (Photo MOSFET) Optocouplers	11
Ceramic High Reliability Photodiode Optocouplers	12
Ceramic High Reliability AC Transistor Optocouplers	12
Ceramic High Reliability Transistor Optocouplers (Very Low Operating Temperature)	12
Hermetic Optocoupler Surface Mount Options	13
Package Dimensions	14
100% Screening to MIL-STD-750	17
Group Testing to MIL-STD-750	18
Process Flow Chart	19
Proton Displacement Damage Measurements in Optocoupler Families	21
ISOCOM Distribution Network	23

We would welcome the opportunity to discuss how we can help you achieve your custom design requirements. You can contact us by:

Address 48 Hutton Close • Crowther • Washington • Tyne & Wear • NE38 0AH • United Kingdom

- **Tel** +44 (0)191 416 6546
- Fax +44 (0)191 415 5055
- Email sales@isocom.uk.com
- Web www.isocom.uk.com

RADIATION HARD CERAMIC OPTOCOUPLERS

DEVICE	PAGE
4N24	5
4N49	5
4N55	7
6N134	9
6N140A	8
CD500	5
CD501	5
CD5731	8
CD650	9
CD651	9
CD750	8
CD850	7
CDMR310A	11
CDMR310B	11
CH100	12
CH300	5
CH301A	5
CH350	9
CH370	8
CH380	7
CH390	8
CQ166	6
CQMR310	11
CS200	5
CS201	5
CS224	5
CS249	5
CS3031	10
CS3032	10
CS3033	10
CS3041	10
CS3042	10
CS3043	10
CS3061	10
CS3062	10
CS3063	10
CS3081	10
CS3082	10
CS3083	10
CS5700	8
CS600	9

ISOCOM LIMITED RADIATION SUMMARY ON OPTOCOUPLERS

TOTAL IONIZATION DOSE TESTED:Up to 1 Mrad(Si)DISPLACEMENT DAMAGE TESTED:1 MeV X 1012NEUTRON TESTED:Transistors - 1.0

Up to 1 Mrad(Si) 1 MeV X 10^{12} Transistors - 1.00E + 11 High Speed - 3.00E + 12 High Gain - 3.00E + 12 High Gain Photon - 1.00E + 13

Ceramic Hermetically Sealed Transistor Optocouplers, manufactured to ISO 9001:2008 & IECQ standards, with an operating temperature range from -55°C to +125°C

Part No.	Circuit	Package Details	CTR (I _F = 10mA) MIN(%)	Continuous Forward Current MAX(mA)	Forward Voltage @ 10mA MAX(V _F)	BV _{CEO} @ 1mA MIN(V)	I _{CEO} (Dark) V _{CE} = 20V MAX(μA)	V_{CE} Sat $I_F = 10mA$ $I_C = 2mA$ MAX(V)	Package Figure No.
4N24		Ø	100	50	1.8	70	100	0.3	Page 14 Fig.3
4N49		C	200	50	1.8	70	100	0.3	Page 14 Fig.3
CH300	43 区 社 12	20	100	15	1.8	70	100	0.25 $I_F = 2mA$ $I_C = 0.2mA$	Page 14 Fig.1
CH301A	43 反 計 12	20	100	15	1.8	70	100	$\begin{array}{c} 0.25\\ I_F = 2mA\\ I_C = 0.2mA \end{array}$	Page 14 Fig.1
CSM100		~	350	50	1.6	70	100	0.3	Page 14 Fig.4
CS200			100	50	1.8	70	100	0.3	Page 15 Fig.6
CS201			200	50	1.8	70	100	0.3	Page 15 Fig.6
CS224			200	50	1.8	70	100	0.3	Page 15 Fig.7
CS249			200	50	1.8	70	100	0.3	Page 15 Fig.7
CD500	8765 <u>k</u> 2 <u>k</u> <u>r</u> 2 <u>k</u> <u>r</u> 2 <u>k</u> <u>r</u> 2 <u>k</u> <u>r</u> 4 <u>k</u> 1234		100	50	1.8	70	100	0.3	Page 15 Fig.7
CD501			100	50	1.8	70	100	0.3	Page 15 Fig.7

Ceramic Hermetically Sealed Transistor Optocouplers, manufactured to ISO 9001:2008 & IECQ standards, with an operating temperature range from -55°C to +125°C

Part No.	Circuit	Package Details	CTR (I _F = 10mA) MIN(%)	Continuous Forward Current MAX(mA)	Forward Voltage @ 10mA MAX(V _F)	BV _{CEO} @ 1mA MIN(V)	$I_{CEO}(Dark)$ $V_{CE} = 20V$ MAX(µA)	V_{CE} Sat $I_F = 10mA$ $I_C = 2mA$ MAX(V)	Package Figure No.
CSM1200		~	200	50	1.8	70	100	0.3	Page 15 Fig.5
CSM1224		~	200	50	1.8	70	100	0.3	Page 15 Fig.5
CSM2224		~	200	50	1.8	70	100	0.3	Page 15 Fig.5
IS49		~	200	50	1.8	70	100	0.3	Page 15 Fig.5
CSM165-2	16 15 14 13 12 11 10 9 X K2 K1 Ph 1 2 3 4 5 6 7 8		100	50	1.8	70	100	0.9	Page 16 Fig.9
CSM165-4	16 15 14 13 12 11 10 9 <u>快</u> 文才 快之 文才 分1 代1 八九 代1 1 2 3 4 5 6 7 8		100	50	1.8	70	100	0.9	Page 16 Fig.9
CSM166-4	16 15 14 13 12 11 10 9 37 37 37 37 37 10 17 10 10 12 1 2 3 4 5 6 7 8		100	50	1.8	70	100	0.9	Page 16 Fig.9
CQ166	16 15 14 13 12 11 10 9 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8	TUTTER	100	50	1.8	70	100	0.9	Page 15 Fig.8

Ceramic Hermetically Sealed High Speed Optocouplers, manufactured to ISO 9001:2008 & IECQ standards, with an operating temperature range from -55°C to +125°C

Part No.	Circuit	Package Details	CTR (I _F = 16mA) MIN %	Continuous Forward Current MAX(mA)	Forward Voltage @ I _F 20mA MAX(V _F)	Typical Data Rate Kb/s	Propagati Tim Vcc = 5V, I tPHL MAX (μs)	on Delay es I _F = 16mA tPLH MAX (µs)	Package Figure No.
MC800/801		C	9	40	1.8	700	R _L = 8.2KΩ 2.0	R∟= 8.2KΩ 6.0	Page 14 Fig.3
MC810/811		C	9	40	1.8	700	R _L = 8.2KΩ 2.0	R∟= 8.2KΩ 6.0	Page 14 Fig.3
CH380		20	9	40	1.8	700	R _L = 8.2KΩ 2.0	R∟= 8.2KΩ 6.0	Page 14 Fig.2
CS800			9	40	1.8	700	R _L = 8.2KΩ 2.0	R∟= 8.2KΩ 6.0	Page 15 Fig.7
CS801			15	40	1.8	700	R _L = 8.2KΩ 2.0	R∟= 8.2KΩ 6.0	Page 15 Fig.7
CD850			9	40	1.8	700	R _L = 1.9KΩ 2.0	R∟= 1.9KΩ 6.0	Page 15 Fig.7
CSM1800		~	9	40	1.8	700	R∟= 1.9KΩ 2.0	R∟= 1.9KΩ 6.0	Page 15 Fig.5
CSM1801		~	15	40	1.8	700	RL= 1.9KΩ 2.0	R∟= 1.9KΩ 6.0	Page 15 Fig.5
CSM168-2	16 15 14 13 12 11 10 9		9	40	1.8	700	RL= 8.2KΩ 2.0	R∟= 8.2KΩ 6.0	Page 16 Fig.9
CSM168-4	16 15 14 13 12 11 10 9		9	40	1.8	700	RL= 8.2KΩ 2.0	R∟= 8.2KΩ 6.0	Page 16 Fig.9
4N55		TITIT	9	40	1.8	700	RL= 8.2KΩ 2.0	R _L = 8.2KΩ 6.0	Page 15 Fig.8

Ceramic Hermetically Sealed High Gain Optocouplers, manufactured to ISO 9001:2008 & IECQ standards, with an operating temperature range from -55°C to +125°C

Part No.	Circuit	Package Details	CTR (I _F = 1.6mA) MIN %	Continuous Forward Current MAX(mA)	Forward Voltage @ I _F 1.6mA MAX (V _F)	Typical Data Rate Kb/s	$\begin{array}{c} \text{Propagati} \\ \text{Tim} \\ \text{R}_{\text{L}} = 6 \\ \text{Vcc} = 5 \\ \text{Vcc} = 5 \\ \text{tPHL} \\ \text{MAX} \\ (\mu s) \end{array}$	ion Delay nes 80KΩ , I _F =5mA tPLH MAX (μs)	Package Figure No.
CH370		28	200	20	1.8	100	12	60	Page 14 Fig.2
CH390	10 9 87 6 5 LAJLAJ LAJLAJ 1 23 4	20	200	20	1.8	100	12	60	Page 14 Fig.2
CSM452		~	200	20	1.8	100	12	60	Page 14 Fig.4
CS700			200	20	1.8	100	12	60	Page 15 Fig.7
CS5700			200	20	1.8	100	10	30	Page 15 Fig.7
CSM141A		~	200	20	1.8	700	12	60	Page 15 Fig.5
CSM1700		~	200	20	1.8	700	12	60	Page 15 Fig.5
CD750			200	20	1.8	100	12	60	Page 15 Fig.7
CD5731			200	20	1.8	100	12	60	Page 15 Fig.7
6N140A	16 15 14 13 12 11 10 9 	TITLE	300	20	1.8	100	12	20	Page 15 Fig.8
CSM160-2/ 161-2/162-2	16 15 14 13 12 11 10 9		300	20	IF = 4mA 1.8	100	12	60	Page 16 Fig.9
CSM160-4/ 161-4/162-4	16 15 14 13 12 11 10 9 <u>** X X X X</u> <u>Kh r/h</u> 1 2 3 4 5 6 7 8		300	20	IF = 4mA 1.8	100	12	60	Page 16 Fig.9

Ceramic Hermetically Sealed High Gain Photon Optocouplers, manufactured to ISO 9001:2008 & IECQ standards, with an operating temperature range from -55°C to +125°C

Part No.	Circuit	Package Details	CTR (I _F = 10mA) MIN(%)	Continuous Forward Current MAX(mA)	Forward Voltage @ I _F 20mA MAX (V _F)	Typical Data Rate Mb/s	Propagation R _L = 510KΩ Vcc = 5V, tPHL MAX (ηs)	Delay Times $D_{L} = 15 pF$ $I_{F} = 13 mA$ tPLH MAX (η s)	Package Figure No.
CH350			100	40	1.8	10	200	200	Page 14 Fig.2
MC600		C	100	40	1.8	10	100	100	Page 14 Fig.3
CSM1600		~	100	40	1.8	10	100	100	Page 15 Fig.7
CS600			I _F = 5mA 100	40	1.8	10	100	100	Page 15 Fig.7
CD650	8765 <u>≥ 88</u> 1234		I _F = 5mA 100	40	1.8	10	100	100	Page 15 Fig.7
CD651	8765 <u>₹88</u> 1234		I _F = 5mA 100	40	1.8	10	100	100	Page 15 Fig.7
6N134	16 15 14 13 12 11 10 9 <u>→ A</u> A <u>FK1</u> 1 2 3 4 5 6 7 8	TITLE	100	40	1.8	10	100	100	Page 15 Fig.8
CSM169-2	16 15 14 13 12 11 10 9 → A A Ĕ <u>FA</u> Kh 1 2 3 4 5 6 7 8		100	40	1.8	10	100	100	Page 16 Fig.9
CSM169-4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100	40	1.8	10	100	100	Page 16 Fig.9

Ceramic Hermetically Sealed Zero Crossing Triac Optocouplers, manufactured to ISO 9001:2008 & IECQ standards, with an operating temperature range from -55°C to +125°C

Part No.	Circuit	Package Details	Peak Blocking Voltage (V _{DRM})	Continuous Forward Current MAX(mA)	Forward Voltage @ I _F 30mA MAX(V _F)	Input Current to Trigger (I _{FT}) Main Terminal Voltage @ 3V	Critical Rate of Rise of Communicating Off-state Voltage (dv/dt (C)) Typ	Package Figure No.
CS3031/ 3032/3033			250	60	1.8	15 / 10 / 5	2000	Page 15 Fig.6
CS3041/ 3042/3043			400	60	1.8	15/10/5	2000	Page 15 Fig.6
CS3061/ 3062/3063			600	60	1.8	15 / 10 / 5	1500	Page 15 Fig.6
CS3081/ 3082/3083			800	60	1.8	15 / 10 / 5	1500	Page 15 Fig.6

Ceramic Hermetically Sealed Linear Optocouplers, manufactured to ISO 9001:2008 & IECQ standards, with an operating temperature range from -55°C to +125°C

Part No.	Circuit	Package Details	Reverse Breakdown Voltage BV _R @ I _R 100µA	Forward Voltage @ I _F 30mA MAX(V _F)	Transfer Gain I _F 10mA V _R = 15V TYP	Rise Time R _L = 50Ω I _F 10mA μs	Fall Time R _L = 50Ω I _F 10mA μs	Package Figure No.
CSL400D								
	Photo- Dicde		200	1.8	1.0	2	2	Page 15 Fig.7
CSL400L								

Ceramic Hermetically Sealed Solid State Relay MOSFET Optocouplers, manufactured to ISO 9001:2008 & IECQ standards, with an operating temperature range from -55°C to +125°C

Part No.	Circuit	Package Details	No. of Channels	Voltage (min)	Current Rate In (min)	Package Figure No.
CSMR40/41			Single	90	3.0A	Page 15 Fig.7
CSMR42			Single	200	3.0A	Page 15 Fig.7
CSMR140		~	Single	400	1.0A	Page 14 Fig.4
CSMR540			Single	400	3.0A	Page 15 Fig.7
CDMR310A			Dual	90	3.0A	Page 15 Fig.7
CDMR310B			Dual	90	3.0A	Page 15 Fig.7
IS53252			Dual	90	3.0A	Page 15 Fig.7
CQMR310			Quad	100	3.0A	Page 16 Fig. 10

Ceramic Hermetically Sealed Photodiode Optocouplers, manufactured to ISO 9001:2008 & IECQ standards, with an operating temperature range from -55°C to +125°C

Part No.	Circuit	Package Details	Dark Current $V_R=5v,$ $R_L = 1M\Omega$ (μA)	Reverse Breakdown Voltage BV _R (MIN)	Rise Time R _L = 3.3KΩ I _F 10mA ηs	Fall Time R _L = 3.3KΩ I _F 10mA ηs	CTR (I _F = 10mA, V _{OUT} = 5) MIN(%)	Package Figure No.
CSM150	Cathode 2 Anode 3	~	100	200	200	200	1.56	Page 14 Fig.4
CSM151	Cathode 6 Anode 2 2	\checkmark	100	200	200	200	1.56	Page 15 Fig.5

Ceramic Hermetically Sealed AC Transistor Optocouplers, manufactured to ISO 9001:2008 & IECQ standards, with an operating temperature range from -55°C to +125°C

Part No.	Circuit	Package Details	Collector-Emitter Breakdown Voltage BV _{CEO} (MIN)	Forward Voltage @ 10mA MAX(V _F)	Rise Time R _L = 3.3KΩ I _F 10mA μs	Fall Time R _L = 50Ω I _F 10mA μs	CTR I _F =10mA, V _{CE} = 5V MIN(%)	Package Figure No.
CSM120		\$	40	1.8	20	20	200	Page 14 Fig.4
CSM121		~	40	1.8	20	20	200	Page 15 Fig.5

Ceramic Hermetically Sealed Transistor Optocouplers, manufactured to ISO 9001:2008 & IECQ standards, with Very Low operating temperature range from -150°C to +125°C

Part No.	Circuit	Package Details	CTR (I _F = 10mA) MIN(%)	Continuous Forward Current MAX(mA)	Forward Voltage @ 10mA MAX(V _F)	BV _{CEO} @ 1mA MIN(V)	I _{CEO} (Dark) V _{CE} = 20V MAX(μA)	V_{CE} Sat $I_F = 10mA$ $I_C = 2mA$ MAX(V)	Package Figure No.
CH100	Emitter Collector	\$	100	15	1.8	70	100	0.25 I _F = 2mA I _C = 0.2mA	Page 14 Fig.4

Hermetic Optocoupler Surface Mount Options

Package Dimensions

Fig 1. 4-pin Hybrid

Fig 2. 5-pin Hybrid

Fig 3. TO-5 6-pin Metal Can

Fig 4. LCC-4

Package Dimensions (continued)

Fig 5. LCC-6

Fig 6. 6-pin DIP

Fig 7. 8-pin DIP

Fig 8. 16-pin DIP

Package Dimensions (continued)

Fig 9. 16-pin Flatpack

Fig 10. 32-pin Flatpack

100% SCREENING to MIL-STD-750

TEST	MIL-STD-750	READ AND RECORD
Internal Visual	2072	
Sealing		
(Fine Leak)	1071, Condition H1	
(Gross Leak)	1071, Condition C	
Temp Cycling	1051, Condition B-55/+125°C, 20 Cycles.	
Const. Acceleration	2006, 5000G, Y1 only.	
PIND	2052, Condition A	
Radiography	2076	
Initial Electrical	125°C, -55°C, 25°C	R & R
HTRB	1039	
Interim Electrical	25°C only	R & R
Burn-In	1039	
Final Electrical	125°C, -55°C, 25°C	R & R
PDA	Max. 5%, pre/post B1 electrical and delta at RT only	Calculate & R
(Fine Leak)	1071, Condition H1	
(Gross Leak)	1071, Condition C	
Solder Dip		
Fine Leak	1071, Condition H1	
Gross Leak	1071, Condition C	

GROUP TESTING to MIL-STD-750

GROUP	TEST	MIL-STD-750	READ & RECORD			
GROUP A						
SG1	Visual inspection & mechanical dimensions	Method 2071				
SG2	DC static test at 25°C		yes			
SG3	DC static test at 125°C and -55°C		yes			
SG4	Dynamic test at 25°C		yes			
GROUP B						
SG 1	Physical dimensions	Method 2066				
SG 2	Solderability	Method 2026				
	Resistance to solvents	Method 1022				
SG 3	Thermal Shock	Method 1056 Cond. B, 25 cycles				
	Temperature cycling	Method 1051, -55/+125°C				
	Hermetic seal fine and gross leak	Method 1071, Cond. H (fine), Cond. C (gross)				
	Electrical measurement	Pre and Post	yes			
	Decap internal visual inspection	2075				
	Bond strength	Method 2037, Cond. D	yes			
	Die shear	Method 2017	yes			
SG 4	Intermittent operation life	Method 1037, 1042, Cond D, Tab.5-5	-			
	Hermetic seal fine and gross leak	Method 1071, Cond. H (fine), Cond. C (gross)				
	Electrical measurement	Pre and Post	ves			
	Bond strength	Method 2037, Cond. D	yes			
SG 5	Acc. steady-state operation life	Method 1027				
	Electrical measurement	Pre and Post	yes			
	Bond strength	Method 2037, Cond. D	yes			
GROUP C						
SG 2	Thermal Shock	Method 1056, Cond. B, 25 shocks				
	Temperature cycling	Method 1051, Cond. C,				
		-55/+125°C , 25 cycles (total 45				
		cycles including screening)				
	Hermetic seal fine and gross leak	Method 1071, Cond. H (fine),				
		Cond. C (gross)				
	Moisture resistance	Method 1021				
	Electrical measurement	Pre and Post	yes			
SG 3	Mechanical shock	Method 2016, non-operating, 1500 G, 0.5 ms, 5 blows in each				
		orientation (X1,Y1,Z1)				
	Vibration	Method 2056				
	Constant acceleration	Method 2006, at a peak level of 5000 G				
	Electrical measurement	Pre and Post	yes			
SG 6	Steady state operating life Not required as B5 is available on same lot					

Space Qualification PROCESS FLOW CHART FOR PACKAGED DEVICES

QA INSPECTION 100% DC PROBE WAFER SCRIBE & BREAK BOND PULL TEST DIE SHEAR TEST HIGH TEMPERATURE BAKE WAFER SELECTION VISUAL INSPECTION ANALYSIS MIL QA VISUAL INSPECTION & SPACE ONLY SERIALISATION ASSEMBLE 100% RTH MEASUREMENT 100% PRE-CAP VISUAL INSPECTION PACKAGE SEAL MARKING 100% TEMP CYCLE - 20 CYCLES 100% CONSTANT ACCELERATION 5000G HERMETIC SEAL TEST 100% FINE & GROSS 100% GROUP A ELECTRICAL TEST R&R

100% HTRB

100% GROUP A ELECTRICAL TEST R&R

100% DC POWER BURN-IN: 240hr @ Tch=125°C

100% ELECTRICAL DELTA EVALUATION

PDA ONLY SAMPLES

100% QA FINAL INSPECTION

SHIP

Space Qualification PROCESS FLOW CHART FOR PACKAGED DEVICES

Group B Testing	*MIL-STD-883	*MIL-STD-750	
Physical Dimensions	Method 2016	Method 2066	
Solderability	Method 2003	Method 2023	
Resistance to Solvents	Method 2015	Method 1022	
Temperature Cycling	Method 1010	Method 1051	
Military Grade	25 cycles	25 cycles	
Space Grade	50 cycles	50 cycles	
Steady State Life (Tch 175°C / 340hr minimum)	Method 1005	Method 1027	
DPA	*MIL-STD-1580A	*MIL-STD-1580A	
	*Unless otherwise indicated	*Unless otherwise indicated	

Environmental & Mechanical Testing Specifications				
	*MIL-STD-883	*MIL-STD-750		
Hermetic Seal Test	Method 1014	Method 1071		
Fine Leak	Condition A1	Condition G or H		
Gross Leak	Condition C	Method 1051		
Temperature Cycle (Standard Military Level)	Method 1010, Condition C	Method 1051, Condition C		
Temperature Cycle (Standard Space Level)	Method 1010, Condition C	Method 1051, Condition C		
Constant Acceleration	Method 2001	Method 2006		
PIND Test	Method 2020	Method 2052, Condition A		
RTH Measurement	Method 1012			
HTRB (High Temperature Reverse Bias)	Method 1015, Condition A	Method 1042, Condition B		
DPA	*MIL-STD-1580A	*MIL-STD-1580A		
	*Unless otherwise indicated	*Unless otherwise indicated		

Inspection Table		
COMMERCIAL	MILITARY	HI-REL / SPACE
AQL Sampling Plan	MIL-STD-883, Method 2010, Class Level B	MIL-STD-883, Method 2010, Class Level S
Isocom Internal Specifications	MIL-STD-750, Method 2070, 2071,2072	MIL-STD-750, Method 2070, 2071,2072

* Isocom Limited can offer their facilities to customers for any of the above testing and screening of parts.

RADIATION HARD OPTOCOUPLERS

PROTON DISPLACEMENT DAMAGE MEASUREMENTS IN OPTOCOUPLER FAMILIES

Research was carried out by the Jet Propulsion Laboratory at California Institute of Technology under contract with the National Aeronautic Space Administration (NASA) on Isocom optocoupler families. JPL used the concept of non-ionizing energy loss (NIEL) to dene an equivalent 1-MeV neutron fluence to interpret displacement damage. In other words, radiation environments of protons, neutrons and electrons are regarded as equivalent if they produce the same non-ionizing dose when proper NIEL factors for protons, neutrons and electrons are used to calculate the dose. DD measurements were performed with proton beam at the 1×10^{11} , 5×10^{11} , 1×10^{12} , 2×10^{12} and 5×10^{12} equivalent 1-MeV neutron fluences in Silicon.

The IS49 and CSM141A devices were tested at the University of Indiana, Bloomington Cyclotron (IUCF) using 200-MeV protons. The CSM1800 device was tested at University of California Davis (UCD) and Canada's National Laboratory for Particle and Nuclear Physics (TRIUMF) using 65-MeV and 105-MeV protons respectively. Five devices of each of the optocouplers were provided for radiation testing. The devices were exposed at room temperature to a series of radiation steps with electrical and optical measurements made before irradiation and between each step. All parts were in an unbiased condition during irradiation (all pins grounded) because DD effects are, to first order, insensitive to bias conditions during irradiation.

The graph below summarizes the result of radiation tests performed on Isocom optocouplers. After each irradiation level, the optocoupler CTRs were measured for a set of values of the forward current (IF) through the LED, using the HP 4156 Semiconductor Parameter Analyzer. The test results demonstrate the parts have a lower degradation using an IF10mA but have a lower operating margin when used with a low forward current, which does help the reliability of the LED.

LED degradation has a super linear dependence on displacement damage.

Where CTRo is the pre-irradiation optocoupler gain, CTR is the gain after irradiation. The alternate plotting format on the left side of figures 2, 4 and 6 is the function of fluence. A subset of the data shown in figures 1, 3 and 5, using test values of $I_F 2$ and 10mA are plotted in this format producing figures 2, 4 and 6, using a value of n that produces a best fit to a straight line with unit slope in log-log plot.

The best fitting n for this data set is 1/3, which is appropriate for heterostructure LED used in the device.

HIGH SPEED FAMILY

Fig. 3. Values of [(CTRo/CTR)1/3 – 1] for I_F = 2 and 8mA for CSM1800

HIGH GAIN FAMILY

Fig. 5. Normalized CTR versus the radiation level for CSM141A

Fig. 7. Normalized CTR versus the radiation level for room temperature and 60oC for CSM141A

Fig. 2. Values of [(CTRo/CTR) – 1] for I_F = 2 and 10mA for IS49

Fig. 6. Values of [(CTRo/CTR)1/3 – 1] for I_F = 2 and 10mA for CSM141A

ISOCOM Distribution Network

We have a growing network of experienced and skilled distributors around the world

USA & CANADA

Data Device Corporation (DCC) 105 Wilbur Place, Bohemia NY 11716, USA Tel: +1 (858) 900-6189 www.ddc-web.com

GERMANY

KAMAKA Electronic Bauelemente Vertriebs GmbH Ulmer Straße 130, 73431 Aalen, GERMANY Tel: +49 (0)73 6196 620 www.kamaka.de

RUSSIA

EFO Ltd 15A Novolitovskaya str., office 441, Saint Petersburg, 194100, RUSSIA Telephone: +7 (812) 327-86-54 www.efo.ru

INDIA

Syratron Technologies Pvt Ltd 203, Copper Arch, 83, Infantry Road, Bangalore, 560001, INDIA Telephone: +91 80 2559 1031 www.syratron.com

SOUTH KOREA

National Chips Co., Ltd #1608, 1609-Tower, Heungdeok IT Valley, 13 Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16954, KOREA Tel: +82-31-261-3173 www.nationalchips.co.kr

JAPAN

Shoshin Honcho 1-Chome Bldg. 6F 1-9-13 Nihonbashi-Honcho, Chuo-ku, Tokyo 103-0023, JAPAN Tel: +81-3-3270-5921 www.shoshin.co.jp

EUROPEAN MANUFACTURER OF HIGH RELIABILITY OPTOELECTRONICS

POWER MOSFETS	MEMORY DEVICES	VOLTAGE REGULATORS
OPTOCOUPLERS	HYBRID ASSEMBLIES	DC/DC CONVERTERS
SOLID STATE RELAYS	POWER CONTROLLERS	JFET TRANSISTORS
SCHOTTKY DIODES	X-RAY SENSORS	CUSTOM DESIGNS

High Reliability Optical Isolation since 1982

www.isocom.uk.com